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blue incomplete extinction when the crystal plates are 
examined on the polarizing microscope in white light. 

Conclusions 

Optical activity has been observed for the first t ime in 
a crystal of  class 4 and the effect has the correct direc- 
t ional properties for this symmetry. Optical  activity has 
now been demonstrated in both  of the enantiomor-  
phous classes 4 and 42m, and the original predictions 
of Gibbs (1882) have been confirmed (Hobden,  1968a). 

The source of the effect and the reason for the dif- 
ference in the magnitudes of the effect in AgGaS2 (522 
deg. m m  -~) and CdGa~S4 are still obscure. Calculations 
by Ramachandran ' s  (1951a, b, c,) method based upon 
the interaction of point dipoles and using reasonable 
values of the atomic polarizabilities give optical rota- 
tory powers for AgGaS2 about two orders of magni- 
tude too low. This shows that  such a model  is not sui- 
table for these covalent tetrahedrally bonded com- 
pounds. 

I would like to thank  Mr D. S. Robertson for growing 
these crystals and Mr D . W . B r o w n  for his assistance 
with this w o r k .  

This paper is contributed by permission of the Direc- 
tor, R.R.E. Copyright Controller H.M.S.O. 
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Elastic coefficients of an isotropic solid. By T. S. G. KmSHNAMURTY and V. APPALANARASIMHAM, Andhra University° 
Waltair, India 

(Received 4 February 1969) 

It is shown, on the basis of Jahn's method, that the conjecture made by one of us that there should be n 
nth order elastic coefficients of an isotropic solid does not hold good. 

It is well known that elasticity expresses the relation be- 
tween the applied stress and the resulting strain, both of 
which can be represented by the symmetric second rank 
tensors. Bhagavantam & Suryanarayana (1949) have em- 
ployed the character method to derive the number of the 
non-vanishing independent elastic coefficients of orders 2 
and 3 for the 32 classes of crystals. Identical results have 
been obtained by Jahn (1949) using the method of reduction 
of a representation. Recently Jahn's (1949) method has been 
extended by Krishnamurty & Gopalakrishnamurty (1968) 
to obtain the fourth- and fifth-order elastic coefficients in 
crystals. When the fourth-order elastic coefficients of crys- 
tals are enumerated by the character method, one of us 
(Krishnamurty, 1963) conjectured that the number of the 
nth order elastic coefficients, symmetric in all the n suffixes, 
of an isotropic solid (R~) would be n. In this note, it is 
shown that deviations from such a conjecture can arise 
from the elastic coefficients of orders higher than five. 

If V denotes the representation of a polar vector and 
IV z] the symmetrical product (Tisza, 1933) of V with itself, 
then the nth order elastic coefficients, which are symmetric 
in all the n indices, are represented by [[ V2],q. In the reduced 
form of the representation, this contains terms of the type 
IDa], where Dz is a five-dimensional representation. Some 
of the values of [D~], for n > 5, may be easily derived and 
are given by 

[D~] = 2D0 + 2D2 + D3 q- 3D4 -t- Ds + 3D6 -t- D7 
q- 2D8+ D9q- Dlo-l- Dl2 , 

[D~I = Do + 3DE + D3 -t- 3D4 + 2Ds + 3D6 -t- 2D7 
+ 3Ds+ D9+ 2D1o+ D11+ D12+ D14 , 

[D28] = 2D0 + 3D2 + D3 + 4D4 + 2Ds + 4D6 + 2D7 + 4D8 
+ 2D9 + 3D10 + Dxl + 2D12 + D13 + D14 + Di 6 , 

IDa] = 2D0 + 3D2 + 2D3 -I- 4D4 + 2Ds + 5D6 q- 3D7 
+4Ds+ 3D9+4Dlo+ 2Dll + 3DIE+ DI3 
+ 2D14+ Dls+ D16+ D18 , 

and 

[Dlz °] = 2D0 + 4D2 + D3 q- 5D4 -t- 3Ds + 5D6 -I- 3D7 
+6Ds+ 3D9+ 5DIo+ 3D11+4D12+ 2D13+ 3D14 
+ Dls+ 2D16+ D17+ D18+ DEo . 

We observe that the coefficient of Do in each one of the 
above tabulated values is different from unity except in the 
case n = 7. On the other hand, we know that the coefficient 
of Do in [D~] (n= 2, 3, 4 and 5) is one (Jahn, 1949; Krishna- 
murty & Gopalakrishnamurty, 1968). It is these coefficients 
of Do in [D~ which are different from unity, that are re- 
sponsible for the deviations in the conjecture referred to 
earlier. 



S H O R T  C O M M U N I C A T I O N S  639 

For instance, we note that, for n=  6, the coefficient of 
Do, which gives the number of the sixth order elastic coef- 
ficients of an isotropic solid (R~) in the reduced form of 
the representation [[ V216], is 7, but not 6. 

The authors' thanks are due to Professor T. Venka- 
tarayudu for his kind interest in this work. 
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It is believed that there is an error in the paper by W. H.Zachariasen [Acta Cryst. (1967) 23, 558] and atten- 
tion is drawn to relevant work published elsewhere. 

The paper entitled A General Theory of X-ray Diffraction 
in Crystals by W. H. Zachariasen has recently been called 
to my attention. The purpose of this communication is 
twofold: 

(1) To point out what I believe to be an error in 
his paper concerning the physics of diffraction 
in perfect crystals, and 

(2) to call to the attention of X-ray crystallogra- 
phers certain aspects of two papers (Werner & 
Arrott, 1965; Werner, Arrott, King & Ken- 
drick, 1966) a thesis (Werner, 1965) and a labo- 
ratory report (Werner & Arrott, 1964) on neu- 
tron diffraction which have a direct bearing on 
the extinction problem. 

The pair of coupled differential equations [equations (4a) 
and (4b) of Zachariasen] describing the flow of energy (X-ray 
photons, electrons, neutrons) in a crystal are a genera- 
lization (Hamilton, 1957) of the equations written first 
by Darwin (1922) to describe secondary extinction in ex- 
tended fiat plates. 

These transport equations are rigorous as long as the 
energy flows along the two directions tx and t2; that is, 
along the incident beam direction and along the direction 
of the emerging diffracted beam. In a perfect crystal region 
this is not the case. The energy flows in a direction normal 
to the tie point which is excited. In a general case where the 
incident beam is divergent, and the crystal is of finite size, 
numerous points on the dispersion surface are excited and 
the coherent wave field inside the crystal will depend in a 
detailed manner on the geometry of the crystal. This prob- 
lem has been treated extensively by Kato (1952, 1960) in a 
series of papers on both electron and X-ray diffraction. 
Consequently, if one wants to deal with the flow of energy 
in a perfect crystal using a transport equation, this equation 
must take into account the coherent nature of the wave 
field and the manifold of directions in which the radiation 
is flowing. 

The pair of coupled differential equations mentioned 
above describe the secondary extinction (or multiple scat- 
tering) problem in mosaic crystals fairly rigorously. The 
power series solution given in Zachariasen's equations (14a) 
and (14b) was written down and expressed in terms of 
modified Bessel functions in the references given in (2) 

above. The secondary extinction coefficient was calculated 
for crystals of various shapes (Werner, 1965, chapter 6) 
as examples of the general applicability of the theory. The 
exact solution for the parallelogram-shaped crystal shown 
in Zachariasen's Fig. 2 was given. 

Certain mathematical subtleties of this multiple reflection 
problem in crystals of finite size are important. Although 
the power series expansion (modified Bessel functions) is a 
general solution of the differential equations, there exist 
certain lines in the crystal region where there are discon- 
tinuities in the derivatives of the current densities. Con- 
sequently, an analytical solution which applies everywhere 
in the crystal cannot be written, and the solution can only 
be continued from region to region in a piecewise sense. 

It should also be pointed out that in these earlier papers 
the differential equations were put in integral form. A 
series solution of these integral equations was given which 
is a simple and direct prescription for calculating the cur- 
rent densities (and subsequently the extinction coefficients) 
in terms of once, three-times, ... (2,,+ 1)-times reflected 
neutrons (X-ray photons, electrons). Consequently, an in- 
ternal check on the accuracy of the successive approxi- 
mations is contained in the calculation. 

It is my opinion that these calculations are potentially 
useful to crystallographers, and will readily conform to 
specialized applications and extensions. 
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